Background Subtraction Using Spatio-Temporal Group Sparsity Recovery
نویسندگان
چکیده
منابع مشابه
Background Subtraction Using Low Rank and Group Sparsity Constraints
Background subtraction has been widely investigated in recent years. Most previous work has focused on stationary cameras. Recently, moving cameras have also been studied since videos from mobile devices have increased significantly. In this paper, we propose a unified and robust framework to effectively handle diverse types of videos, e.g., videos from stationary or moving cameras. Our model i...
متن کاملBackground Subtraction with Adaptive Spatio-Temporal Neighborhood Analysis
In the literature, visual surveillance methods based on joint pixel and region analysis for background subtraction are proven to be effective in discovering foreground objects in cluttered scenes. Typically, per-pixel foreground detection is contextualized in a local neighborhood region in order to limit false alarms. However, such methods have an heavy computational cost, depending on the size...
متن کاملBackground Subtraction in Video Using Recursive Mixture Models, Spatio-Temporal Filtering and Shadow Removal
We describe our approach to segmenting moving objects from the color video data supplied by a nominally stationary camera. There are two main contributions in our work. The first contribution augments Zivkovic and Heijden’s recursively updated Gaussian mixture model approach, with a multidimensional Gaussian kernel spatio-temporal smoothing transform. We show that this improves the segmentation...
متن کاملA Novel Approach to Background Subtraction Using Visual Saliency Map
Generally human vision system searches for salient regions and movements in video scenes to lessen the search space and effort. Using visual saliency map for modelling gives important information for understanding in many applications. In this paper we present a simple method with low computation load using visual saliency map for background subtraction in video stream. The proposed technique i...
متن کاملSpatio-temporal Background Models for Outdoor Surveillance
Video surveillance in outdoor areas is hampered by consistent background motion which defeats systems that use motion to identify intruders. While algorithms exist for masking out regions with motion, a better approach is to develop a statistical model of the typical dynamic video appearance. This allows the detection of potential intruders even in front of trees and grass waving in the wind, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Circuits and Systems for Video Technology
سال: 2018
ISSN: 1051-8215,1558-2205
DOI: 10.1109/tcsvt.2017.2697972